Optimal control of spins by Analytical Lie Algebraic Derivatives
نویسندگان
چکیده
Computation of derivatives (gradient and Hessian) a fidelity function is one the most crucial steps in many optimization algorithms. Having access to accurate methods for computing these even more desirable where process requires propagation computations over steps, which particularly important optimal control spin systems. Here we propose novel numerical approach, ESCALADE (Efficient Spin Control using Analytical Lie Algebraic Derivatives), that offers exact first second by taking advantage properties group 2 × unitary matrices, SU(2), its algebra, algebra skew-Hermitian su(2). A full mathematical treatment proposed method along with some examples are presented.
منابع مشابه
Lie Algebraic Obstructions to Γ-convergence of Optimal Control Problems∗
We investigate the possibility of describing the “limit problem” of a sequence of optimal control problems (P)(bn), each of which is characterized by the presence of a time dependent vector valued coefficient bn = (bn1 , . . . , bnM ). The notion of “limit problem” is intended in the sense of Γ-convergence, which, roughly speaking, prescribes the convergence of both the minimizers and the infim...
متن کاملcontrol of the optical properties of nanoparticles by laser fields
در این پایان نامه، درهمتنیدگی بین یک سیستم نقطه کوانتومی دوگانه(مولکول نقطه کوانتومی) و میدان مورد مطالعه قرار گرفته است. از آنتروپی ون نیومن به عنوان ابزاری برای بررسی درهمتنیدگی بین اتم و میدان استفاده شده و تاثیر پارامترهای مختلف، نظیر تونل زنی(که توسط تغییر ولتاژ ایجاد می شود)، شدت میدان و نسبت دو گسیل خودبخودی بر رفتار درجه درهمتنیدگی سیستم بررسی شده اشت.با تغییر هر یک از این پارامترها، در...
15 صفحه اولLie Algebraic Methods in Nonlinear Control
Lie algebraic method generalize matrix methods and algebraic rank conditions to smooth nonlinear systems. They capture the essence of noncommuting flows and give rise to noncommutative analogues of Taylor expansions. Lie algebraic rank conditions determine controllability, observability, and optimality. Lie algebraic methods are also employed for statespace realization, control design, and path...
متن کاملLie Algebraic Methods in Optimal Control of Stochastic Systems with Exponential-of-integral Cost
The purpose of this paper is to formulate and study the optimal control of partially observed stochastic systems with exponential-of-integral-sample cost, known as risk-sensitive problems, using Lie algebraic tools. This leads to the introduction of the su cient statistic algebra, Ls, through which one can determine a priori the maximum order of the controller. When dim(Ls) < 1, the constructio...
متن کاملInformation States in Optimal Control of Stochastic Systems: a Lie Algebraic Theoretic Approach
In this paper we introduce the suucient statistic algebra which is responsible for propagating the suucient statistic , or information state, in the optimal control of stochas-tic systems. Using a Lie algebraic formulation, the suf-cient statistic algebra enables us to determine a priori whether there exist nite-dimensional controllers; it also enables us to classify all nite-dimensional contro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Automatica
سال: 2021
ISSN: ['1873-2836', '0005-1098']
DOI: https://doi.org/10.1016/j.automatica.2021.109611